

Searches for a High Mass Higgs Boson at the Tevatron

Jennifer Pursley

University of Wisconsin, Madison

On behalf of the CDF and D0 Collaborations

Aspen Winter Conference, Aspen, CO

February 8-14, 2009

- Standard Model needs Higgs or Higgs-like mechanism to:
 - □ Explain electroweak symmetry breaking
 - □ Give particles mass
- Direct Higgs searches at LEP
 - Exclude Higgs of $M_{\perp} < 114.4$ GeV at 95% C.L.
- Indirect constraints from electroweak data prefer lighter Higgs $(M_{\perp} < 154 \text{ GeV})$
 - □ Combined with LEP results → upper limit of M_□ < 185 GeV

Plot from LEP EWK Working Group

Four main production mechanisms

☐ Gluon fusion dominant process at Tevatron

□ Associated production (WH, ZH) and vector boson fusion contribute more at low M_H

Standard Model Higgs Decay

- Higgs decay modes depend on Higgs mass m_H
- For gg \rightarrow H \rightarrow WW σ x BR,
 - □ Peak sensitivity at M_□ ~ 160
- WW decay modes
 - □ Hadronic W decay modes have large QCD bkg
 - □ Dilepton (e, μ): BR ~ 6%
 - Sensitive to $\tau \rightarrow (e, \mu)$
 - Small BR, but... clean, easy to trigger
- High mass Higgs search:

 $H \rightarrow WW \rightarrow /v/v$

$H \rightarrow WW \rightarrow l\nu l\nu$ Backgrounds

- Standard Model processes create a variety of backgrounds:
 - □ WW one of the largest backgrounds
 - ☐ Heavy diboson: WZ, ZZ
 - □ tt and single top
 - \square Drell-Yan (Z $\rightarrow \mathcal{U}$)
 - □ W + jets/γ
- All cross sections measured by Tevatron experiments
 - Many discovery analyses:
 - WW, WZ, ZZ, single top

 $H \rightarrow WW \rightarrow l\nu l\nu$ Signature

- Decay kinematics
 - \square 2 high p_{\top} leptons (e or μ)
 - Missing transverse energy
 - □ Broad invariant mass spectrum
 - □ WW pair from spin-0 Higgs boson:

 Dilepton opening angle strongest background discriminant

- Collide pp at √s = 1.96 TeV
- Integrated over 250 pb⁻¹ of data in January 2009

FERMILAB'S ACCELERATOR CHAIN

February 10, 2009

Collider Run II Integrated Luminosity

- Both experiments have acquired about 5 fb⁻¹
 - □ Today's results use up to 3 fb⁻¹

$H \rightarrow WW \rightarrow /v/v$ Selection

- Separate by dilepton type
- Trigger on one high-p₊ lepton
 - $p_T(\mu) > 10 \text{ GeV}, p_T(e) > 15 \text{ GeV}^{10^2}$
 - □ Two opposite charge leptons
 - Isolation cuts
 - □ M_" > 15 GeV

Final state	еµ	ee	μμ
E _T (GeV)	> 20	> 20	> 20
E _T scaled	> 7	> 6	> 5
$M_{t}^{\min}(l, \cancel{E}_{T})$ (GeV)	> 20	> 30	> 20
$\Delta \phi(l,l)$	< 2.0	< 2.0	< 2.5

$H \rightarrow WW \rightarrow /v/v$ Neural Nets

- Expect ~15 Higgs events over ~1600 background
- Train one NN for each dilepton channel at each Higgs mass (5 GeV steps)
 - □ 11 kinematic input variables
- NN output distributions used to set limits
 - Limits calculated using Modified Frequentist (CL_s)

$H \rightarrow WW \rightarrow l\nu l\nu$ Systematics

Syst(%)	Signal	∑Bkg
JES	0.3	1.1
Jet ID	6.0	0.0
PV Rew	0.9	0.6
Z-p _T Rew	4.6	0.
WW NLO	6.8	3.0
σ	5	4
Multijet	0	2
PDF	4	4
Lepton ID	5.7	5.7

Two classes of systematic:

Shape systematics

- Modify output of discriminant
- Also change normalization

Flat systematics

 Affect only normalization, do not modify shape

$H \rightarrow WW \rightarrow /v/v$ Limits

- Expected limits
 - \Box At M $_{\rm H}$ = 165, expected limit of 1.9 times the Standard Model cross-section $\sigma_{_{\rm SM}}$
- Observed limit at $M_H = 165$: 2.0 x σ_{SM}

$H \rightarrow WW \rightarrow l\nu l\nu$ Selection

- Separate analysis by number of jets (0, 1, and ≥ 2)
- Trigger on one high-p₊ lepton
 - $p_{T}(I_{1}) > 20 \text{ GeV}, p_{T}(I_{2}) > 10 \text{ GeV}$
 - □ Two opposite charge leptons
 - \square M_{//} > 16 GeV/c²
 - $\square \not \! E_{\scriptscriptstyle T}^{\scriptscriptstyle \text{spec}} > 25 \text{ GeV (ee, } \mu\mu)$
 - $\square \, \mathbb{E}_{\tau}^{\text{spec}} > 15 \text{ GeV } (e\mu)$
- Separate by lepton quality into high and low S/B regions

H → WW + 0 Jet Analysis

- Only consider gg → H production
- Dominant background WW
- Inputs to Neural Network

HWW 0 Jets	$M_H = 160$	Bkgd	Data
High S/B	7	320	322
Low S/B	2	220	230

- Use kinematic variables and matrix element likelihood ratios
- Limits calculated from NN output distributions using Bayesian approach

$$P(\vec{x}_{obs}) = rac{1}{\langle \sigma
angle} \int rac{d\sigma_{th}(\vec{y})}{d\vec{y}} \; \epsilon(\vec{y}) \; G(\vec{x}_{obs}, \vec{y}) \; d\vec{y}$$

$$LR_m = \frac{P_m(\vec{x}_{obs})}{P_m(\vec{x}_{obs}) + \sum_i k_i P_i(\vec{x}_{obs})}$$

H → WW + 1 Jet Analysis

- Include VH and VBF signal
 - □ Adds ~1 event (additional 20% signal)
- Dominant background still WW
 - □ Drell-Yan similar size
- 8 kinematic input variables to Neural Network
 - Matrix elements only calculated for 0 jet events

HWW 1 Jets	$M_H=160$	Bkgd	Data
High S/B	4	150	143
Low S/B	1	76	84

$H \rightarrow WW + \ge 2$ Jets Analysis

- No separation by lepton quality due to low statistics =
- VH and VBF signal contributions dominant (60%)
- Largest background is tt
 - □ Anti-b-tagging reduces tt background by > 50%
 - □ tt̄ still accounts for half of background events
- 8 kinematic inputs to Neural Network

$HWW \ge 2 \text{ Jets}$	$M_H = 160$	Bkgd
All S/B	4	129
Data	139	

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ Systematics

Syst(%)	Signal	∑Bkg
JES	8.7	1.1
Lepton Energy	3.1	0.0
Miss Et Model	1.0	2 - 5
Conversion	0	1 - 4
WW NLO	10	10
σ (PDF, scale)	12	10
Multijet	0	4
Lepton ID	1.9	1.9

Two classes of systematic:

Shape systematics

- Modify output of discriminant
- Studied but found to be negligible

Flat systematics

 Affect only normalization, do not modify shape

$H \rightarrow WW \rightarrow /v/v$ Limits

- Combine jet channels into one result
- At $M_{H} = 165$,
 - □ Expected limit of 1.6 x σ_{SM}
 - □ Observed of 1.7 x σ_{sм}

$WH \rightarrow WWW \rightarrow // + X$

- WH \rightarrow WWW \rightarrow $/^{\pm}$ / $/^{\pm}$ + X
 - □ Signature is like-sign dileptons
 - Background primarily from charge misidentification
 - Adds to high mass sensitivity
- D0 analysis uses 1 fb⁻¹ and 2-D likelihood discriminant
 - □ Results at 160: 24 (18) x $σ_{SM}$ observed (expected)
- CDF analysis uses 2.7 fb⁻¹ and Boosted Decision Tree
 - □ Results at 160: 25 (20) x σ_{SM} observed (expected)

Tevatron High Mass Combination Tevatron Run II Preliminary, L=3 fb⁻¹

- Combine CDF and D0 results into an overall Tevatron Higgs limit
 - Calculate both Bayesian and CL_s limits

Tevatron High Mass Combination Tevatron Run II Preliminary, L=3 fb⁻¹

- At $M_H = 170$, expected limit is 1.4 x σ_{SM}
- Observed limit is 1.0 x σ_{sm} → First Tevatron exclusion!

Tevatron High Mass Combination Tevatron Run II Preliminary, L=3 fb⁻¹

- Exclude range of ~165 to 170 at 90% confidence level
- Results first shown at ICHEP 2008

Summary

- Exciting times for Higgs searches!
- Tevatron making great strides in high mass searches

 - Rapid incorporation of new data and analysis improvements
 - Both experiments approaching Standard Model sensitivity
 - □ New update expected soon
- Tevatron excludes at 95% C.L. production of a SM Higgs boson of 170 GeV
 - ☐ More to come...

Extra Slides

- Preliminary results presented at ICHEP 2008
- Available as arXiv: 0808.0534v1 [hep-ex]

TABLE IX: Ratios of median expected and observed 95% CL limit to the SM cross section for the combined CDF and DØ analyses as a function of the Higgs boson mass in GeV/c², obtained with the Bayesian method.

	155	160	165	170	175	180	185	190	195	200
Expected	1.7	1.3	1.2	1.4	1.7	2.0	2.8	3.3	4.2	4.6
Observed	1.7	1.4	1.2	1.0	1.3	1.6	2.5	3.3	4.8	5.1

TABLE X: Ratios of median expected and observed 95% CL limit to the SM cross section for the combined CDF and DØ analyses as a function of the Higgs boson mass in GeV/c^2 , obtained with the CL_S method.

	155	160	165	170	175	180	185	190	195	200
Expected	1.6	1.2	1.1	1.3	1.7	2.0	2.8	3.4	4.2	4.7
Observed	1.6	1.3	1.1	0.95	1.2	1.4	2.3	3.2	4.7	5.0

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ Systematics

	Σ Bkgd	Signal	$Z \rightarrow ee$	Z ightarrow au au	$W + jets/\gamma$	$t \bar t$	ZZ	WZ	WW	QCD
JES +	-0.93	-0.30	-1.80	0.00	-0.91	-0.52	-0.19	-1.38	-0.02	-
JES -	1.15	0.00	3.70	-26.67	0.62	0.26	0.58	-1.24	-0.02	-
JER~Up	-0.12	-0.30	0.27	0.00	-0.44	-0.07	0.58	-0.69	-0.21	-
$JER\ Down$	0.29	0.00	-0.65	0.00	-0.44	5.44	0.00	-0.97	-0.07	-
Jet ID	6.05	0.00	21.54	0.00	0.00	0.19	0.78	0.41	0.00	-
\mathcal{L} Rew	-0.26	-0.21	-1.44	-9.97	0.06	-0.58	2.64	-1.41	1.07	-
Beam Rew	0.90	0.62	1.63	9.07	0.51	0.40	1.06	0.66	0.77	-
$Z - p_T$ Rew	-4.62	0.00	-16.45	-10.88	0.00	0.00	0.00	0.00	0.00	-
WW NLO	3.00	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
σ	-	4	5	5	5	5	5	5	5	-
QCD	2	0	-	-	-	_	-	-	-	-
PDF	4	4	-	_	-	_	-	-	-	-
Norm.	2	2	-	-	-	-	-	-	-	-
Lep. ID.	5.7	5.7	-	-	-	_	-	_	-	-
Charge flips	_	1.0	1.0	_	_	_	_	_	27	-

$H \rightarrow WW \rightarrow /v/v$ Events

	$e\mu$ pre-selection	$e\mu$ final	ee pre-selection	ee final	$\mu\mu$ pre-selection	$\mu\mu$ final
Z ightarrow ee	209.0 ± 3.0	0.72 ± 0.16	160463 ± 264	73.6 ± 5.1	_	_
$Z ightarrow \mu \mu$	151.1 ± 0.6	2.14 ± 0.06	-	-	256432 ± 230	957 ± 14
Z ightarrow au au	2312 ± 2	2.45 ± 0.05	835 ± 8	1.0 ± 0.3	1968 ± 11	5.5 ± 0.5
${f t} \overline{f t}$	187.5 ± 0.2	54.2 ± 0.1	96.9 ± 0.2	28.5 ± 0.1	19.4 ± 0.1	10.1 ± 0.1
W + jets	163.4 ± 5.3	60.1 ± 3.2	174 ± 7	72.0 ± 4.3	149 ± 3	85.8 ± 2.1
WW	285.6 ± 0.1	108.0 ± 0.1	127.5 ± 0.4	45.7 ± 0.2	162.9 ± 0.5	91.3 ± 0.3
WZ	14.8 ± 0.1	4.9 ± 0.1	89.6 ± 0.8	7.6 ± 0.2	51.6 ± 0.5	16.2 ± 0.3
ZZ	3.47 ± 0.01	0.49 ± 0.01	73.5 ± 0.3	5.4 ± 0.1	43.0 ± 0.2	13.5 ± 0.1
Multi-jet	190 ± 168	1 ± 8	2322 ± 193	4.3 ± 8.3	945 ± 31	63.6 ± 8.0
Signal $(m_H = 160 \text{ GeV})$	9.0 ± 0.1	6.9 ± 0.1	4.40 ± 0.01	3.49 ± 0.01	4.7 ± 0.1	4.09 ± 0.06
Total Background	3516 ± 168	234 ± 9	164181 ± 327	238 ± 11	259770 ± 232	1242 ± 16
Data	3706	234	164290	236	263743	1147

- Total background ~ 1600 events
 - □ Largest background contribution varies by dilepton type
- Total signal for SM Higgs of 160 GeV: 15 events
 - Expected background events agrees well with events seen in data

H → WW 0 Jet Systematics

0 Jet Uncertainties	\overline{WW}	WZ	ZZ	$tar{t}$	DY	$W\gamma$	W+jet	gg o H	WH	ZH	VBF
Cross Section											
Scale								10.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%		12.0%			
Acceptance											
Scale (leptons)								2.5%			
Scale (jets)								4.6%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		1.5%			
PDF Model (jets)								0.9%			
Higher-order Diagrams	5.5%	10.0%	10.0%	10.0%	5.0%	10.0%					
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%			
Conversion Modeling						20.0%					
Jet Fake Rates											
(Low S/B)							21.5%				
(High S/B)							27.7%			<u></u>	
MC Run Dependence	3.9%			4.5%		4.5%		3.7%			
Lepton ID Efficiencies	2.0%	1.7%	2.0%	2.0%	1.9%	1.4%		1.9%			
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%		3.3%			
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%		5.9%			

- Only consider gg → H production
 - □ Small contribution from VH and VBF

- Inputs to Neural Network
 - ☐ Kinematic:
 - ΔR(ll), Δφ(ll), transverse mass H₊
 - □ Matrix element likelihood ratios
 - LR_{HWW} and LR_{WW}

$$P(\vec{x}_{obs}) = rac{1}{\langle \sigma
angle} \int rac{d\sigma_{th}(\vec{y})}{d\vec{y}} \; \epsilon(\vec{y}) \; G(\vec{x}_{obs}, \vec{y}) \; d\vec{y}$$

$$LR_m = \frac{P_m(\vec{x}_{obs})}{P_m(\vec{x}_{obs}) + \sum_i k_i P_i(\vec{x}_{obs})}$$

CDF Run II Preliminary		$\mathcal{L} = 3$	$3.0 \; {\rm fb}^{-1}$
$M_H = 160$	GeV/c^2		
$tar{t}$	0.96	\pm	0.19
DY	66.88	\pm	15.20
WW	280.42	\pm	38.99
WZ	12.17	\pm	1.93
ZZ	17.29	\pm	2.74
$W\mathrm{+jets}$	83.61	\pm	20.09
$W\gamma$	79.15	\pm	21.12
Total Background	540.48	±	64.81
gg o H	8.38	\pm	1.29
Total Signal	8.38	±	1.29
Data		552	

HWW 0 Jet

H → WW 1 Jet Systematics

1 Jet Uncertainties	WW	WZ	ZZ	$tar{t}$	DY	$W\gamma$	W+jet	$gg \to H$	WH	ZH	VBF
Cross Section											
Scale								10.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%		12.0%	5.0%	5.0%	10.0%
Acceptance											
Scale (leptons)								2.8%			
Scale (jets)								-5.1%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		1.7%	1.2%	0.9%	2.2%
PDF Model (jets)								-1.9%			
Higher-order Diagrams	5.5%	10.0%	10.0%	10.0%	5.0%	10.0%			10.0%	10.0%	10.0%
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%	1.0%	1.0%	1.0%
Conversion Modeling						20.0%					
Jet Fake Rates											
(T area C /D)							22.2%				
(Low S/B)							22.270				
$\begin{array}{c} \text{(Low S/B)} \\ \text{(High S/B)} \end{array}$							31.5%				
, , ,	1.8%			2.2%		2.2%		2.6%	2.6%	1.9%	2.8%
(High S/B)	1.8%	2.0%	2.2%	2.2%	2.0%	2.2%		2.6% 1.9%	2.6% 1.9%	1.9% 1.9%	2.8%
(High S/B) MC Run Dependence		$\frac{2.0\%}{2.1\%}$	2.2% 2.1%		2.0% 3.4%						

- Dominant background still WW
 - □ Drell-Yan bkg of similar size
- Do not calculate matrix element likelihood ratio for 1 jet events

CDF Run II Preliminary	$\int \mathcal{L} = 3.0 \; \mathrm{fb}^{-1}$						
$M_H=160~{ m GeV}/c^2$							
$t ar{t}$	24.57	\pm	4.77				
DY	71.21	\pm	16.19				
WW	75.10	\pm	10.11				
WZ	12.71	\pm	2.02				
ZZ	4.53	\pm	0.72				
$W\mathrm{+jets}$	26.23	\pm	6.78				
$W\gamma$	11.35	\pm	3.00				
Total Background	225.69	土	28.21				
gg o H	4.08	\pm	0.63				
WH	0.57	\pm	0.08				
ZH	0.21	\pm	0.03				
VBF	0.33	\pm	0.05				
Total Signal	5.18	±	0.69				
Data		227					
	HWW 1 Jet						

- Include VH and VBF signal
 - □ Adds ~1 event (additional 20% signal)

H → WW ≥ 2 Jets Systematics

≥ 2 Jets Uncertainties	WW	WZ	ZZ	$tar{t}$	DY	$W\gamma$	W+jet	gg o H	WH	ZH	VBF
Cross Section											
Scale								10.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%		12.0%	5.0%	5.0%	10.0%
Acceptance											
Scale (leptons)								3.1%			
Scale (jets)								-8.7%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		2.0%	1.2%	0.9%	2.2%
PDF Model (jets)								-2.8%			
Higher-order Diagrams	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%			10.0%	10.0%	10.0%
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%	1.0%	1.0%	1.0%
Conversion Modeling						20.0%					
b-tag Veto				7.0%							
Jet Fake Rates							27.1%				
MC Run Dependence	1.0%			1.0%		1.0%		1.7%	2.0%	1.9%	2.6%
Lepton ID Efficiencies	1.9%	2.9%	1.9%	1.9%	1.9%	1.9%		1.9%	1.9%	1.9%	1.9%
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%		3.3%	2.1%	2.1%	3.3%
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%		5.9%	5.9%	5.9%	5.9%

$H \rightarrow WW + \ge 2$ Jets Analysis

- No separation by lepton quality due to low statistics
- Dominant background tt
 - □ Anti-b-tagging reduces tt background by > 50%

CDF Run II Preliminary	$\int A$	$\int \mathcal{L} = 3.0 \; \mathrm{fb}^{-1}$						
$M_H = 160 \text{ GeV}/c^2$								
$t \bar t$	70.34	±	14.46					
DY	27.74	\pm	6.75					
WW	15.68	\pm	2.47					
WZ	3.33	\pm	0.53					
ZZ	1.35	\pm	0.21					
$W\mathrm{+jets}$	8.38	\pm	2.27					
$W\gamma$	1.80	\pm	0.47					
Total Background	128.62	土	20.19					
gg o H	1.52	±	0.26					
WH	1.18	\pm	0.16					
ZH	0.59	\pm	0.08					
VBF	0.61	\pm	0.10					
Total Signal	3.90	土	0.45					
Data		139						
		HWV	$V \ge 2$ Jets					

 VH and VBF contributions dominant (60%)

H → W⁺W⁻ Final States

- W decay modes
 - \square Leptonic 33% (e, μ)
 - □ Hadronic 67%
- Dilepton (e, μ): BR ~ 6%
 - \square Sensitive to $\tau \rightarrow (e, \mu)$
 - Small BR, but...clean, easy to trigger
- Lepton + τ_{had} : BR ~ 4%
 - □ Potentially useful
- Lepton + jets: BR ~ 30%
 - □ Large W+jets background
- All hadronic: BR ~ 45%
 - Large QCD background

$WH \rightarrow WWW \rightarrow // + X$

- Search for WH → WWW → f* f* + X using 1 fb⁻¹
 - Signature is like-sign dileptons (ee, μμ, eμ)
 - □ Background primarily from charge misidentification
- Use 2-D likelihood discriminant
 - Separate physics bkgfrom charge misid bkg
 - □ Input variables:

 - $\Delta \phi^{\min}(\ell, E_T)$, and E_T^{had}
- Results at $M_{H} = 160$:
 - $_{\square}$ Expected 18 x $\sigma_{_{\rm SM}}$
 - \Box Observed 24 x σ_{SM}

$WH \rightarrow WWW \rightarrow // + X$

- Search for WH → WWW → f[±] f[±] + X using 2.7 fb⁻¹
 - Again, signature is like-sign dileptons (ee, μμ, eμ)
 - □ Main background is charge misidentification
- Use Boosted Decision Tree discriminant
 - □ Trained at each M_H (10 GeV)
 - □ 8 kinematic input variables:
 - $\mathbf{p}_{\mathsf{T}}(\ell_{1}), \, \mathbf{p}_{\mathsf{T}}(\ell_{2}), \, \mathbf{p}_{\mathsf{T}}(\ell\ell), \, \mathbf{E}_{\mathsf{T}}, \, \mathbf{M}_{\ell\ell},$ $\mathbf{E}_{\mathsf{T}}^{\mathsf{spec}}, \, \mathbf{H}_{\mathsf{T}}, \, \mathsf{and} \, \mathbf{N}_{\mathsf{iets}}$
- Results for $M_{\perp} = 160$:
 - $_{\square}$ Expected 20 x $\sigma_{_{SM}}$
 - $_{\square}$ Observed 25 x $\sigma_{_{SM}}$

EDE

CDF and D0 Detectors

- CDF
 - □ Silicon inner tracker, wire drift chamber outer
 - □ EM and had calorimeters
 - Muon coverage lηl< 1.5</p>

- .∨ ∃ Silicon inner track
- Silicon inner tracker, fiber outer tracker
- □ LAr-U calorimeter
- □ Good muon coverage

February 10, 2009 J. Pursley, Aspen 2009 **36**